数学

计算机取模运算

$A % B = A - A / B * B$

结果只和左操作数有关:当左操作数为负数时,结果为负数或0;当左操作数为正数时,结果为正数或0。

两数相除

https://leetcode.cn/problems/divide-two-integers/

class Solution {
public:
    int divide(const int dividend, const int divisor) {
        if (dividend == INT_MIN && divisor == -1) return INT_MAX;
        if (dividend == INT_MIN && divisor == 1) return INT_MIN;
        if (dividend > 0) return -divide(-dividend, divisor);
        if (divisor > 0) return -divide(dividend, -divisor);
        // 转换为负数 / 负数,防止溢出
        if (dividend > divisor) return 0;
        int sub = divisor;
        int result = 1;
        // 防止sub + sub溢出
        while (dividend - sub <= sub) {
            result += result;
            sub += sub;
        }
        return result + divide(dividend - sub, divisor);
    }
};

约瑟夫环/约瑟夫问题

快速幂/快速幂取模/费马小定理

快速幂

long long fast_pow(long long base, long long idx) {
    if (base == 0) return 0;
    long long result = 1;
    while (idx > 0) {
        if (idx & 1) result *= base;
        base *= base;
        idx >>= 1;
    }
    return result;
}

快速幂取模

long long fast_pow(long long base, long long idx, long long mod) {
    if (base == 0 || mod == 1) return 0;
    long long result = 1;
    base %= mod;
    while (idx > 0) {
        if (idx & 1) result = (result * base) % mod;
        base = (base * base) % mod;
        idx >>= 1;
    }
    return result;
}

费马小定理:若p为素数,gcd(a, p) = 1,则$a^{p-1} \equiv 1 \pmod p$

因此当a和p互质且p为素数时,可以计算$a^{x}\bmod p=a^{x\bmod(p-1)} \bmod p$ 来提高效率。

矩阵快速幂

image-20201212213738508

image-20201212220955866

(不可用!)

//
// Created by Jiang Yinzuo on 2020/12/12.
//
#include <cstdio>
#include <cstring>

template<typename T>
struct Matrix {
    int n;
    T **mat;
    explicit Matrix(int n) : n(n), mat(new T*[n]) {
        for (int i = 0; i < n; ++i) {
            mat[i] = new T[n];
        }
    }
    ~Matrix() {
        for (int i = 0; i < n; ++i) {
            delete []mat[i];
        }
        delete[] mat;
    }
    Matrix operator*(const Matrix &m) {
        Matrix<T> res(n);
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < n; ++j) {
                res.mat[i][j] = 0;
                for (int k = 0; k < n; ++k) {
                    res.mat[i][j] += mat[i][k] * m.mat[k][j];
                }
            }
        }
        return res;
    }
    Matrix operator%=(T mod) {
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < n; ++j) {
                mat[i][j] %= mod;
            }
        }
        return *this;
    }
    Matrix pow(T idx) {
        Matrix<T> ans(n);
        memset(ans, 0, sizeof(ans));
        Matrix<T> base(n);
        for (int i = 0; i < n; ++i) {
            ans.mat[i][i] = 1;
        }
        while (idx) {
            if (idx & 1) {
                ans = ans * base;
            }
            base = base * base;
            idx >>= 1;
        }
        return ans;
    }
    Matrix pow(T idx, T mod) {
        Matrix<T> ans(this->n);
        Matrix<T> base = *this;
        for (int i = 0; i < n; ++i) {
            ans.mat[i][i] = 1;
        }
        while (idx) {
            if (idx & 1) {
                ans = ans * base;
                ans %= mod;
            }
            base = base * base;
            base %= mod;
            idx >>= 1;
        }
        return ans;
    }
};

int main() {
    int n, k;
    scanf("%d %d", &n, &k);
    Matrix<int> base(n);
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < n; ++j) {
            scanf("%d", &base.mat[i][j]);
        }
    }
    auto ans = base.pow(k, 1000000007);
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < n; ++j) {
            printf("%d ", ans.mat[i][j]);
        }
        puts("");
    }
    return 0;
}

组合数学

组合数打表

$\mathrm C_n^m=C_{n-1}^m+C_{n-1}^{m-1}$

long long C[1009][1009];
constexpr long long MOD = 1e9 + 7;
void init() {
    for (int n = 0; n <= 1003; ++n) {
        C[n][0] = C[n][n] = 1;
        for (int m = 1; m < n; ++m) {
            C[n][m] = (C[n - 1][m] + C[n - 1][m - 1]) % MOD;
        }
    }
}

只算少数几个组合数

阶乘打表,$$C_n^m = \frac{n!}{(n-m)!m!}$$

公式

平方和公式$$\sum \limits_{i=1}^n = n(n+1)(2n+1)/6$$

常数

PI = 3.14159265358979323846